
Running head: ONLINE SHOOTER TASK 1

Online Shooter Simulation in Practice – Template, Tutorial, and Manual

Joost Timmerman

Jannis Kreienkamp

Maximilian Agostini

Nils Pontus Leander

Wolfgang Stroebe

Arie Kruglanski

If you are using the online version of the shooter task, please include the following citation:

Agostini, M., Kreienkamp, J., Kruglanski, A., Leander, N. P., Stroebe, W. (2018). Handgun

Ownership and the Racial Bias in Shooting Simulation Studies. Manuscript submitted

for publication

If you used this guideline please include the following in your references:

Timmerman, J., Kreienkamp, J., Agostini, M., T., Leander, N. P., Stroebe, W., & Kruglanski,

A. W. (2018). Online Shooter Simulation (OSS). Groningen: Center for

Psychological Gun Research. Retrieved from:

https://www.thedataflowcompany.com/resources/oss/oss-manual.pdf

The online implementation of the shooter task is based on:

Correll, J., Park, B., Judd, C. M., & Wittenbrink, B. (2002). The police officer’s dilemma:

Using ethnicity to disambiguate potentially threatening individuals. Journal of

Personality and Social Psychology, 83(6), 1314–1329. http://doi.org/10.1037/0022-

3514.83.6.1314

https://www.gunpsychology.org/resources/oss/oss-manual.pdf
https://www.gunpsychology.org/resources/oss/oss-manual.pdf
https://www.gunpsychology.org/resources/oss/oss-manual.pdf
http://doi.org/10.1037/0022-3514.83.6.1314
http://doi.org/10.1037/0022-3514.83.6.1314

ONLINE SHOOTER TASK 2

Abstract

This manual aims to assist researchers in adopting and implementing the gun shooter task

within their (online) research programs. We offer a pre-built, ready to run survey-template

(for Qualtrics). Additionally, we present a conceptual overview of the functional parts so that

the task can be adjusted or adapted. Moreover, we also included a data processing and data

analysis guide (step by step from data download to final per participant summary).

Keywords: Shooter Task, Online Experiment, Template, Analysis Tool

ONLINE SHOOTER TASK 3

Online Shooter Simulation in Practice – Template, Tutorial, and Manual

The following document aims to guide researchers and practitioners to implement the

Shooter Task (Correll, Park, Judd, & Wittenbrink, 2002) in an online study context (OUR

REF). The goal is to provide readers with an easy-to-use and straight forward guide on how to

implement the online shooter simulation (OSS). This handbook includes four parts:

1. Access to a pre-build, fully functional template (for Qualtrics)

2. Tutorial on implementations and adaptation of the template

3. More in-depth manual of the functional elements of the OSS

4. Processing and analyzing the OSS data

We offer two main ways to implement the shooter task in online capable

questionnaires. The first option is a pre-build, fully functional Qualtrics questionnaire

template that can be uploaded into your own account and then be filled with additional

content. The second option is an in-depth discussion of the individual building blocks of this

task, which can be used to change parts of the task (e.g., change and host your own target

stimuli) or to adapt the task for other online survey options (including Survey Monkey, Google

Forms, or Typeform).

Accessing the Template

We offer a free, fully functional template of the online shooter task (OSS) for

implementation in Qualtrics. The template relies on a “Qualtrics Survey Format” file (.qsf),

which is a text file that stores all information of a survey structure

(https://www.qualtrics.com/support/survey-platform/survey-module/survey-tools/import-and-

export-surveys/). This setup allows for full data ownership by the user and open-source access

to any aspect of the survey.

The template can be downloaded at:

https://www.thedataflowcompany.com/resources/oss/OnlineShooterTask.qsf

https://www.qualtrics.com/support/survey-platform/survey-module/survey-tools/import-and-export-surveys/
https://www.qualtrics.com/support/survey-platform/survey-module/survey-tools/import-and-export-surveys/
https://www.gunpsychology.org/resources/oss/OnlineShooterTask.qsf

ONLINE SHOOTER TASK 4

Template Implementation

After you have downloaded the template you can immediately upload to the file into

your own Qualtrics account. To upload the template log-in to your Qualtrics account and

navigate to the Projects page ① (if you are inside another project you might have to click on

Projects twice or even return to the start screen by clicking on the Qualtrics logo). Then click

on + Create Project ② to open the creation dialog box.

In the new window, make sure you are in the Research Core tab ③	and select the

Create From Existing option ④.

ONLINE SHOOTER TASK 5

In the new window, select the From File tab ⑤ and click the Choose a .QSF File

button ⑥.

In the pop-up window search and select the OSS template you downloaded earlier ⑦.

Then click on the Open button ⑧ to upload the OSS template.

ONLINE SHOOTER TASK 6

Finally, choose your Project Name ⑨ and click on Create Project ⑩.

If you have further questions about the setup of a survey via a QSF file in Qualtrics

you can find a full documentation of format and process on the Qualtrics support website

(https://www.qualtrics.com/support/survey-platform/my-projects/creating-a-

project/#CreatingFromAFile). Additionally, the QSF file can be opened with any text editor.

The file is usually a single delimited text string, but we have indented and formatted the file

so that users can inspect or adapt the template even before uploading it.

Functional Elements of the OSS (Manual)

The OSS was originally programmed for Qualtrics Research Core because the online

tool is flexible, offers a free version, and is widely used (especially, a lot of educational

licenses; Hine, 2016). Technically, the implementation is, however, equally applicable to any

online survey tool that supports: (1) modifications of the header (to load external JavaScript

resources), (2) custom Cascading Style Sheets (CSS), (3) question HTML source formatting,

(4) access to the response storage via JavaScript (e.g., embedded data or custom variables),

and ideally (4) JavaScript compatibility on question elements. As such the online shooter task

can be changed in parts (e.g., change stimuli set), be adapted for other platforms (e.g., Survey

https://www.qualtrics.com/support/survey-platform/my-projects/creating-a-project/%23CreatingFromAFile
https://www.qualtrics.com/support/survey-platform/my-projects/creating-a-project/%23CreatingFromAFile

ONLINE SHOOTER TASK 7

Monkey) or set up on your own servers. To aid any of these needs we have compiled a

description of the 4 functional elements of the OSS.

1. Hosting stimuli and task JavaScript file

2. Adapting and loading JavaScript files, style sheets, and assets

3. Setting up Task (HTML and JavaScript)

4. Saving the data

In a nutshell, the task works as such: (1) The images, sounds, JavaScripts, and utility

assets are stored on your own servers or hosted by content delivery networks (CDN). (2) The

JavaScript files (including the OSS task) are specified in the header’s <script> tag to make

them accessible on all pages (using the scr attribute). (3) The task page is set up using HTML

elements, a cascading style sheet (CSS) and a JavaScript snippet to initiate the task. And (4)

the online tool’s data storage is set up to receive the participants’ response patterns and

reaction times.

1. Hosting stimuli and task JavaScript file

The task stimuli (png files with backgrounds and populated backgrounds; i.e. with

armed and unarmed targets) and the task JavaScript file have to be made accessible in the

online survey tool. We opted with an option to host the task stimuli in a single archive file

(ZIP file), which together with the task JavaScript we made accessible using an absolute URL

(e.g., “https://gmw-qualtrics.webhosting.rug.nl/npleander/shootertask/shooter-task-

1000ms.js”). As described in Agostini, Kreienkamp, Leander, Kruglanski, and Stroebe

(2018), we used a validated, reduced stimulus set of only 48 stimuli (8 practice trials, and 40

task trials; available at: https://gmw-

qualtrics.webhosting.rug.nl/npleander/shootertask/stimuli/img_48.zip). The full stimulus sets

(80 and 100 stimuli) are available at Joshua Correll’s personal web page:

https://gmw-qualtrics.webhosting.rug.nl/npleander/shootertask/stimuli/img_48.zip
https://gmw-qualtrics.webhosting.rug.nl/npleander/shootertask/stimuli/img_48.zip

ONLINE SHOOTER TASK 8

http://psych.colorado.edu/~jclab/FPST.html. Finally, the JavaScript for the shooter task itself

can be accessed at: https://gmw-qualtrics.webhosting.rug.nl/npleander/shootertask/shooter-

task-1000ms.js.

2. Adapting and loading JavaScript files, style sheets, and assets

2.1. The Shooter Task JavaScript is the key stone of the OSS. It specifies the task

parameters (e.g., number of empty backgrounds between trials, maximum response time),

loads and displays the stimuli, and sets up the response matrices to be saved in your online

survey provider. Even novel JavaScript users will be able to adjust the task parameters:

The adjustments can easily be done by opening the JavaScript file with any common

text editor (e.g., Windows Notepad, Apple TextEdit, Notepad++, or VS Code). More

technical adaptations such as fitting the response arrays to your preferences or exploring other

data storage options and specifying other survey engine options are also possible and are

easily accessible to proficient JavaScript developers, would, however, go beyond the scope of

this user manual.

2.2. Loading files into your survey environment relies upon the HTML header

<script> tag. The task loads six essential JavaScript files.

BACKGROUNDS_MIN
BACKGROUNDS_MAX
PRACTICETRIALS

FIXATION_DISPLAYTIME
FEEDBACK_DISPLAYTIME
BREAK_INTERVAL
BREAK_DURATION

= 1,
= 3,
= true,
= 500,
= 1000,
= 1000,
= 1000,
= 1500,
= 20,

FEEDBACK_POINTS_HIT = 10, // hit
FEEDBACK_POINTS_CR = 5,
FEEDBACK_POINTS_FA = -20, // false alarm
FEEDBACK_POINTS_MISS = -40, // miss
FEEDBACK_POINTS_TOO_SLOW
// Set keyboard keys for response options
KEYCODE_SHOOT = 74, // J
KEYCODE_DONT_SHOOT = 70, // F
KEYCODE_SPACEBAR = 32, // Spacebar,

images_zip_url

http://psych.colorado.edu/~jclab/FPST.html
https://gmw-qualtrics.webhosting.rug.nl/npleander/shootertask/shooter-task-1000ms.js
https://gmw-qualtrics.webhosting.rug.nl/npleander/shootertask/shooter-task-1000ms.js

ONLINE SHOOTER TASK 9

<head> <!-- Not needed for Qualtrics header -->
<script src="//gmw-qualtrics.webhosting.rug.nl/npleander/shootertask/assets/libs/jquery-2.2.4.min.js"></script>
<script src="//gmw-qualtrics.webhosting.rug.nl/npleander/shootertask/assets/libs/preloadjs-0.6.2.min.js"></script>
<script src="//gmw-qualtrics.webhosting.rug.nl/npleander/shootertask/assets/libs/soundjs-0.6.2.min.js"></script>
<script src="//gmw-qualtrics.webhosting.rug.nl/npleander/shootertask/assets/libs/jszip.js"></script>
<script src="//gmw-qualtrics.webhosting.rug.nl/npleander/shootertask/assets/libs/jszip-utils.js"></script>
<script src="//gmw-qualtrics.webhosting.rug.nl/npleander/shootertask/shooter-task-1000ms.js"></script>

</head> <!-- Not needed for Qualtrics header -->

1. The jQuery library (version 2.2.4, works equally with version 3.x.x) to ensure

cross-browser compatibility and to simplify the methods used in other code

(more information see: https://jquery.com/). Note that some survey engines, such

as the Qualtrics engine, preload this library for you (for more information see

here) and note that the library can also be accessed through content delivery

networks to increase speed and ensure server accessibility (e.g.:

https://code.jquery.com/jquery-3.3.1.min.js).

2-3. The PreloadJS (version 0.6.2) and SoundJS (version 0.6.2) libraries created by

GSkinner can add sound effects to the OSS. Detailed documentation can be

found at https://createjs.com/ or at https://github.com/CreateJS and CDN links

can be found at http://code.createjs.com/.

4-5. The JSZip (version 3.1.3) and JSZip utilities (version 0.0.2) libraries by Stuart

Knightley (https://github.com/Stuk) to load the stimuli images into the task as a

single ZIP file.

6. The Online Shooter Task itself.

If you were to host these libraries and the task file yourself the header tag would point

to the external JavaScript files (for information on the Qualtrics header access see link). For

example:

2.3. The Cascading Style Sheet has to be referenced in the <head> tag as well. To set

up the task screen for the participant and ensure consistent styling of text, graphics, and

fixation cross the following markup can be used (accessible at https://gmw-

qualtrics.webhosting.rug.nl/npleander/shootertask/assets/css/style.css):

https://jquery.com/
https://www.qualtrics.com/support/survey-platform/survey-module/question-options/add-javascript/#Guidelines
https://code.jquery.com/jquery-3.3.1.min.js
https://createjs.com/
https://github.com/CreateJS
http://code.createjs.com/
https://github.com/Stuk
https://www.qualtrics.com/support/survey-platform/survey-module/look-feel/advanced-look-feel-settings/#InsertingAHeader
https://gmw-qualtrics.webhosting.rug.nl/npleander/shootertask/assets/css/style.css
https://gmw-qualtrics.webhosting.rug.nl/npleander/shootertask/assets/css/style.css

ONLINE SHOOTER TASK 10

/* use border box sizing */
*,
*:before,
*:after {

-webkit-box-sizing: border-box;
-moz-box-sizing: border-box;
box-sizing: border-box;

}

.instructions p,
.instructions-practice p,
.feedback p,
.instructions-finished p {

margin: 30px 0;
}

/* styling */
.shootertask-header{

text-align: center;
margin: 0;
padding-top: 50px;
font-family: Georgia, Times, "Times New Roman", serif;
font-weight: normal;
font-size: 3em;

}

.shootertask {

position: relative;
width: 1000px;
height: 600px;
margin: 0 auto;
padding: 30px;
text-align: center;
background: #fff; /* background: #eee; */
font-family: 'Arial', sans-serif;

}

/*
.shootertask img {

max-width: 800px;
}
*/

.fixationchar,
.feedback,
.restbreak,
.instructions,
.instructions-practice,
.instructions-finished {

display: none; /* initially hidden */
}

.fixationchar {

font-size: 40px;
}

.feedback {

font-size: 32px;
}

.trial-img,
.fixationchar,
.instructions,
.instructions-practice,
.loading,
.feedback,
.restbreak,
.instructions-finished {

position: absolute;
top: 50%;
left: 50%;
width: 100%;
transform: translate(-50%, -50%);

}

ONLINE SHOOTER TASK 11

<head>
<link rel="stylesheet" href="//gmw-qualtrics.webhosting.rug.nl/npleander/shootertask/assets/css/style.css">

</head>

And the file can similarly be referenced in the header using an absolute URL (for CSS access

options in Qualtrics see: https://www.qualtrics.com/support/survey-platform/survey-

module/look-feel/advanced-look-feel-settings/):

3. Setting up the Task (HTML and JavaScript)

Another crucial aspect of the OSS is to set up the task interface for the participant.

With the script and styling information in place only the HTML elements and the task

initiation script have to be set up. The HTML elements replace a question text without answer

options in your online survey provider. Here any aspect of the instruction texts during the task

can be altered and adjusted. The HTML markup is the following:

.trial-img {

height: 100%;
}

.loading-img {

margin-right: 10px;
padding-bottom: 5px;
vertical-align: middle;

}

.loading-error {

color: #CC0000;
}

<div class="shootertask">
<div class="instructions-practice">

<p>You will have less than a second to make each decision.

 You will receive points based on your performance.

 This first round of the game is for practice.</p>

<p>Remember: Press the "J" key to shoot and the "F" key to not shoot.</p>

<p>If you are ready for the practice phase, use your right trigger finger (pointer finger) to
press the "J" key.</p>

<p>

<small>(if this doesn't work, please focus on this window first by clicking it)</small>
</p>

</div>

<div class="instructions">

<p>You have finished the practice phase. The test phase of the Active Shooter Task is longer.

 You will receive feedback as you go. Please stay focused so we can accurately gauge
your performance.</p>

<p>Remember: Press the "J" key to shoot and the "F" key to not shoot.</p>

<p>When you are ready, press the SPACEBAR to start the test phase.</p>

<p>

<small>(if this doesn't work, please focus on this window first by clicking it)</small>
</p>

</div>

https://www.qualtrics.com/support/survey-platform/survey-module/look-feel/advanced-look-feel-settings/
https://www.qualtrics.com/support/survey-platform/survey-module/look-feel/advanced-look-feel-settings/

ONLINE SHOOTER TASK 12

Qualtrics.SurveyEngine.addOnload(function()

{

var qualtricsSurveyEngine = Qualtrics.SurveyEngine,

qualtricsQuestionData = this;

initShooterTask(qualtricsSurveyEngine, qualtricsQuestionData);

});

Additionally, the OSS script has to be called and populated with information about the

survey engine. In Qualtrics, JavaScipt functionality can be added to individual questions using

an included JavaScript editor (for documentation see

https://www.qualtrics.com/support/survey-platform/survey-module/question-options/add-

javascript/). Here you add the following code to the question itself:

If such a feature is not available to you, similar functionality and initiation of the OSS

might be reached through the HTML <script> tag within the the question element.

5. Saving the data

The final aspect is setting up the system to retrieve the OSS response data. The

participant’s data will be saved in a matrix array that gets converted into a JSON formatted

<div class="loading" id="loading">
<img alt="Loading..." class="loading-img" src="//gmw-
qualtrics.webhosting.rug.nl/npleander/shootertask/assets/img/loading.gif">
Loading 0%

<div class="loading-error"> </div>

</div>

<div class="trial-img">

+
</div>

<div class="restbreak">

<p>Rest for seconds before continuing...</p>

<p>Remember:

 "J" = shoot

 "F" = don't shoot.</p>

</div>

<div class="feedback">

<p>
0 points</p>

<p> </p>

<p>Total:

0 points</p>
</div>

<div class="instructions-finished">

<p>This is the end of the task. Please click the '>>' button to continue.</p>
</div>

</div>

https://www.qualtrics.com/support/survey-platform/survey-module/question-options/add-javascript/
https://www.qualtrics.com/support/survey-platform/survey-module/question-options/add-javascript/

ONLINE SHOOTER TASK 13

array per participant. This array includes the characteristics of the target stimuli (i.e., a

practice trial Boolean, target ethnicity, an armed Boolean, picture id), the response

information (i.e., shoot decision, reaction time in milliseconds), as well as an ID variable of

the participant. In Qualtrics this JSON array is saved in an embedded data field that represents

a custom variable with information per participant (can be specified in the Shooter Task

JavaScript file, see 2.1.). Should you not have access to the survey engines data storage an

alternative would be to ensure that identifying information is loaded into the response array

and to then save the OSS data separately on your own servers and merge it with the survey

responses at a later time point (note, however, that this would be part of a greater effort of

adapting the OSS to a different survey provider and would include major technical changes to

the OSS JavaScript file – recommended only to experienced users).

Dealing with OSS Data

In this concluding section we will illustrate the data preparation steps using the data

output format from Qualtrics and the freely available analysis program R Studio (the full R

Markdown can be downloaded at https://www.thedataflowcompany.com/resources/oss/

Dealing-with-OSS-Data.RMD). We assume a basic understanding of R and the R Studio

environment. Importing the Data from Qualtrics

In a first step, we will load the Qualtrics data into the R environment. We use the

data.table package’s fread function to use all CPU cores while loading the comma-

separated values file (csv file).

[The first bit of code (pacman package) checks whether the package was previously installed.

If necessary, installs it and then loads the package into the R library for you to use]

if (!require("pacman")) install.packages("pacman")
Loading required package: pacman
pacman::p_load(data.table)

dat.Qualtrics = fread('OSS Data - CSV Qualtrics.csv',header=T,sep=',')

http://www.thedataflowcompany.com/resources/oss/

ONLINE SHOOTER TASK 14

pacman::p_load(jsonlite,plyr,psych,knitr)

json = dat.Qualtrics$taskData # extract (subset) OSS data only

json = json[-(1:2)] # remove first two rows (headers from Qualtrics)
json = gsub("\"\"", "\"", json) # replace douple """" with single ""
json = json[json != ""] # remove all empty elements

JSON to R Data frame
json.df = ldply(lapply(as.list(json), function(x) fromJSON(x, flatten=TRUE)), data
.frame)

NA to "NULL"
json.df$firing[is.na(json.df$firing)] = "NULL"

Character Strings to Factors
json.df[, (lapply(json.df, class) == "character")] = sapply(json.df[, (lapply(json
.df, class) == "character")], as.factor)
clean up
rm(json)
look at result

Preparing the JSON file.

In a second step we look at the OSS shooter data in more detail. We extract it from the

larger Qualtrics data frame, clean up Qualtrics export oddities and transform the JSON file

into a R data frame to be processed further.

Shooter Data Extracted: First 5 Rows of the new Data Frame

responseID firing ethnicity armed Reaction
Time

Total
Points

Practice
Trial filename

R_3g7pnKNYpfDVpYx NULL white FALSE 1000.00 -25 TRUE ziwu04p2.jpg
R_3g7pnKNYpfDVpYx TRUE black TRUE 939.99 -15 TRUE zbba923.jpg
R_3g7pnKNYpfDVpYx TRUE white TRUE 722.42 -5 TRUE zjwa04d1.jpg
R_3g7pnKNYpfDVpYx NULL black FALSE 1000.00 -30 TRUE zfbu92w1.jpg
R_3g7pnKNYpfDVpYx FALSE black FALSE 824.37 -25 TRUE zkbu11w2.jpg

Note that the data is organized in a single data frame in a long format. That is to

say that, every participant occupies multiple rows (one for every trail) and each participant is

identifiable through the responseID column. In the following steps we will summarize the

shooter data into common statistics.

ONLINE SHOOTER TASK 15

long format

Summarize counts per participants
Count = dcast(count[count$practiceTrial=="FALSE",],

responseID ~ ethnicity + armed + firing,
value.var = "Freq")

Rename coulmns
setnames(Count,

old = c("black_unarmed_noshot", "black_unarmed_null", "black_unarmed_shot", "b
lack_armed_noshot", "black_armed_null"," black_armed_shot", "white_unarmed_noshot"

Extract Count Decisions

The first summary statistics center around the count decisions in response to different

types of target stimuli. For every type of the 4 types of stimuli – 2(ethnicity: black vs. white)

X 2(object: armed vs. unarmed) – we get three possible response decision options: (1) shoot,

(2) do not shoot, and (3) time out [null]. Additionally, the responses are separated by whether

they were part of the initial practice trails or whether they were part of the experimental trials.

Count Summary Extracted: First 5 Rows of the new Data Frame

responseID ethnicity armed Practice Trial firing Freqency
R_0BB7yeTxeJSYZqN black unarmed FALSE noshot 1
R_0BB7yeTxeJSYZqN black armed FALSE noshot 6
R_0BB7yeTxeJSYZqN black unarmed FALSE shot 5
R_0BB7yeTxeJSYZqN black armed FALSE shot 1
R_0BB7yeTxeJSYZqN white unarmed FALSE noshot 4

Note that the current summary of the counts is still in a so that all

decisions and participants are listed beneath each other. Every participant and their individual

responses are clearly identified but for most types of analyses we would like to have a single

row per participant with the decision patterns as individual variables (i.e., the wide format).

We do that by casting (reshaping) the data by participant with ethnicity, armed, and

firing as our measurement variables. Additionally, in this example we drop all practice

trials before we re-order the data.

Summarize shoot decisions by stimuli types
count = as.data.frame(with(json.df, table(responseID, ethnicity, armed, practiceTr
ial, firing)))
Rename Factor labels
levels(count$armed) = c("unarmed", "armed")
levels(count$firing) = c("noshot", "null", "shot")
look at result

ONLINE SHOOTER TASK 16

Count Summary per participant: First 5 Rows of the new Data Frame

responseID

ct.bk.unarme
d.noshot

ct.bk.unar
med.null

ct.bk.una
rmed.shot

[…]

ct.wt.
armed
.null

ct.wt.ar
med.sho

t
Null
sum

R_0BB7yeTx
eJSYZqN 1 8 1 […] 4 3 22

R_0f7qOEsy
UE0voNb 6 3 1 […] 2 8 6

R_0H5wt2iiu
gKwzXr 5 2 3 […] 1 4 4

R_0HyH0Hsd
fg2dsf 1 2 7 […] 0 10 2

Signal Detection Statistics

In the next step we convert the count statistics into more common signal detection

statistics. While they are conceptually the same, many researchers and readers are more

comfortable with decision counts in the form of proportions and with the common labels of

‘correct rejection’, ‘false alarm’, ‘miss’, and ‘hit’ (Note that we divide every count by 10

because participants, in our case, saw 10 targets of every stimuli option). This also offers the

option to further summarize the decisions more broadly and irrespective of the targets

ethnicity (then dividing by 20 for a total of 10 Black and 10 White targets).

, "white_unarmed_null", "white_unarmed_shot", "white_armed_noshot", "white_armed_n
ull", "white_armed_shot"),

new = c("ct.bk.unarmed.noshot", "ct.bk.unarmed.null", "ct.bk.unarmed.shot", "c
t.bk.armed.noshot", "ct.bk.armed.null", "ct.bk.armed.shot", "ct.wt.unarmed.noshot"

, "ct.wt.unarmed.null", "ct.wt.unarmed.shot", "ct.wt.armed.noshot", "ct.wt.armed.n
ull", "ct.wt.armed.shot"))
Add total counts of timeouts
Count$null_sum = rowSums(Count[,grep("null",names(Count))])
rm(count)
look at result

Signal Detection Basics Counts (CR = correct rejection, FA = false alarm, M = mi
ss, H = hit)
Signal = Count[,grep("shot",names(Count))]/10
setnames(Signal,

old = c("ct.bk.unarmed.noshot", "ct.bk.unarmed.shot", "ct.bk.armed.noshot", "c
t.bk.armed.shot", "ct.wt.unarmed.noshot", "ct.wt.unarmed.shot", "ct.wt.armed.nosho
t", "ct.wt.armed.shot"),

new = c("CR.bk", "FA.bk", "M.bk", "H.bk", "CR.wt", "FA.wt", "M.wt", "H.wt"))

Signal Detection Basics overall percentage (irrespective of ethnicity)
Signal$CR.tot = rowSums(Count[,grep("unarmed.noshot",names(Count))])/20

ONLINE SHOOTER TASK 17

We also offer more complex signal detection measures (of sensitivity and response

bias). A detailed description of their uses and formulas would, however, go beyond the scope

of this manual and can be found elsewhere (e.g., Stanislaw & Todorov, 1999).

Sensitivity Analysis
Whites
Sensitivity Statistics
Signal$dprime.wt = qnorm(Signal$H.wt)-qnorm(Signal$FA.wt)
Signal$Aprime.wt = (0.5+(sign(Signal$H.wt-Signal$FA.wt)*

(((Signal$H.wt-Signal$FA.wt)^2+abs(Signal$H.wt-Signal$FA.wt))/
(4*pmax(Signal$H.wt, Signal$FA.wt)-4*Signal$H.wt*Signal$FA.wt))))

Signal$Adprime.wt = pnorm(Signal$dprime.wt/sqrt(2))

Response Bias
Signal$Beta.wt = exp((qnorm(Signal$FA.wt)^2-qnorm(Signal$H.wt)^2)/2)
Signal$c.wt = -(qnorm(Signal$H.wt)+qnorm(Signal$FA.wt))/2
Signal$Bdbprime.wt = (sign(Signal$H.wt-Signal$FA.wt)*

((Signal$H.wt*(1-Signal$H.wt)-Signal$FA.wt*(1-Signal$FA.wt))/
(Signal$H.wt*(1-Signal$H.wt)+Signal$FA.wt*(1-Signal$FA.wt))))

Blacks
Sensitivity Statistics
Signal$dprime.bk = qnorm(Signal$H.bk)-qnorm(Signal$FA.bk)
Signal$Aprime.bk = (0.5+(sign(Signal$H.bk-Signal$FA.bk)*

(((Signal$H.bk-Signal$FA.bk)^2+abs(Signal$H.bk-Signal$FA.bk))/
(4*pmax(Signal$H.bk, Signal$FA.bk)-4*Signal$H.bk*Signal$FA.bk))))

Signal$Adprime.bk = pnorm(Signal$dprime.bk/sqrt(2))

Response Bias
Signal$Beta.bk = exp((qnorm(Signal$FA.bk)^2-qnorm(Signal$H.bk)^2)/2)
Signal$c.bk = -(qnorm(Signal$H.bk)+qnorm(Signal$FA.bk))/2
Signal$Bdbprime.bk = (sign(Signal$H.bk-Signal$FA.bk)*

((Signal$H.bk*(1-Signal$H.bk)-Signal$FA.bk*(1-Signal$FA.bk))/
(Signal$H.bk*(1-Signal$H.bk)+Signal$FA.bk*(1-Signal$FA.bk))))

Overall
Sensitivity Statistics
Signal$dprime.tot = qnorm(Signal$H.tot)-qnorm(Signal$FA.tot)
Signal$Aprime.tot = (0.5+(sign(Signal$H.tot-Signal$FA.tot)*
(((Signal$H.tot-Signal$FA.tot)^2+abs(Signal$H.tot-Signal$FA.tot))/
(4*pmax(Signal$H.tot,Signal$FA.tot)-4*Signal$H.tot*Signal$FA.tot))))
Signal$Adprime.tot = pnorm(Signal$dprime.tot/sqrt(2))

Response Bias
Signal$Beta.tot = exp((qnorm(Signal$FA.tot)^2-qnorm(Signal$H.tot)^2)/2)
Signal$c.tot = -(qnorm(Signal$H.tot)+qnorm(Signal$FA.tot))/2
Signal$Bdbprime.tot = (sign(Signal$H.tot-Signal$FA.tot)*

((Signal$H.tot*(1-Signal$H.tot)-Signal$FA.tot*(1-Signal$FA.tot))/
(Signal$H.tot*(1-Signal$H.tot)+Signal$FA.tot*(1-Signal$FA.tot))))

Signal$FA.tot = rowSums(Count[,grep("unarmed.shot",names(Count))])/20
Signal$M.tot = rowSums(Count[,grep(".armed.noshot",names(Count))])/20
Signal$H.tot = rowSums(Count[,grep(".armed.shot",names(Count))])/20
Signal$responseID = Count$responseID

ONLINE SHOOTER TASK 18

If you decide to calculate (any of) these more complex measures as described above

make sure to merge them with the other count and simple signal detection summaries.

Reaction Times

In our last step, we will also calculate mean reaction times for the different decision

patterns. Importantly, the decision of whether null responses (time outs are saved as the

maximum reaction time) are included in the mean calculation should be considered. The code

below includes the reaction times of null responses in the calculation because decisions of

data cleaning and missing data have to be made by the individual researcher and all have an

influence of which data-points you want to include for the summary statistics. The below

code, consequently, offers a framework to be built upon. The easiest way to adapt the current

version is to create a separate data frame with the participants relevant for summary before

extracting the reaction time means.

Merge Counts with Signal Detection Statistics
Decisions = merge(x=Count, y=Signal, by.x="responseID", by.y="responseID")
rm(Signal)

pacman::p_load(magrittr,dplyr)
Summarize Mean Reaction Times by Target Stimuli, Ethnicity, and Shoot Decisions
rt = json.df %>%

group_by(responseID, ethnicity, armed, practiceTrial, firing) %>%
summarise_at(vars("reactionTime"), mean)

Rename Factor Lables
rt$ethnicity = factor(rt$ethnicity, labels = c("black", "white"))
rt$armed = factor(rt$armed, labels = c("unarmed", "armed"))
rt$firing = factor(rt$firing, labels = c("noshot", "null", "shot"))

Aggregate per Participant
RT = dcast(rt[which(rt$practiceTrial=="FALSE" & rt$firing!="null"),], responseID ~
ethnicity + armed + firing, value.var = "reactionTime")

Rename Columns
setnames(RT,

old = c("black_unarmed_noshot", "black_unarmed_shot", "black_armed_noshot", "b
lack_armed_shot", "white_unarmed_noshot", "white_unarmed_shot", "white_armed_nosho
t", "white_armed_shot"),

new = c("rt.bk.unarmed.noshot", "rt.bk.unarmed.shot", "rt.bk.armed.noshot", "r
t.bk.armed.shot", "rt.wt.unarmed.noshot", "rt.wt.unarmed.shot", "rt.wt.armed.nosho
t", "rt.wt.armed.shot"))
rm(rt)

Summarize Mean Reaction Times by Decision Correctness
Correct Decisions

ONLINE SHOOTER TASK 19

rt.cor= subset(json.df, (practiceTrial==FALSE & armed==TRUE & firing=="TRUE") | (p
racticeTrial==FALSE & armed==FALSE & firing=="FALSE")) %>%

group_by(responseID, ethnicity) %>%
summarise_at(vars("reactionTime"), mean)

Aggregate per Participant
rt.cor.t = dcast(rt.cor, responseID ~ ethnicity, value.var = "reactionTime")
Add mean correct reaction time (irrespective of Ethnicity)
rt.cor.t$total= (subset(json.df, (practiceTrial==FALSE & armed==TRUE & firing=="TR
UE") | (practiceTrial==FALSE & armed==FALSE & firing=="FALSE")) %>%

group_by(responseID) %>%
summarise_at(vars("reactionTime"), mean))$reactionTime

Rename Columns
setnames(rt.cor.t,

old = c("black","white","total"),
new = c("rt.cor.bk","rt.cor.wt","rt.cor.all"))

Incorrect Decisions
rt.incor = subset(json.df, (practiceTrial==FALSE & armed==TRUE & firing=="FALSE")
| (practiceTrial==FALSE & armed==FALSE & firing=="TRUE")) %>%

group_by(responseID, ethnicity) %>%
summarise_at(vars("reactionTime"), mean)

Aggregate per Participant
rt.incor.t = dcast(rt.incor, responseID ~ ethnicity, value.var = "reactionTime")
Add mean incorrect reaction time (irrespective of Ethnicity)
rt.incor.t$total= (subset(json.df, (practiceTrial==FALSE & armed==TRUE & firing=="
FALSE") | (practiceTrial==FALSE & armed==FALSE & firing=="TRUE")) %>%

group_by(responseID) %>%
summarise_at(vars("reactionTime"), mean))$reactionTime

Rename Columns
setnames(rt.incor.t,

old = c("black", "white", "total"),
new = c("rt.cor.bk", "rt.cor.wt", "rt.cor.all"))

We, finally, merge the count decisions (including the signal detection measures, if

necessary), with the different reaction time data frames using the common response ID of

the participants.

Merge Reaction Times and Decisions
RT2 = merge(RT, rt.cor.t, by="responseID",all=T)
RT3 = merge(RT2, rt.incor.t, by="responseID",all=T)
DV = merge(Decisions, RT3, by="responseID",all=T)

Clean-up Environment
rm(RT,RT2,RT3,rt.cor,rt.cor.t,rt.incor,rt.incor.t,Count,Decisions)

ONLINE SHOOTER TASK 20

References

Correll, J., Park, B., Judd, C. M., & Wittenbrink, B. (2002). The police officer’s dilemma:

Using ethnicity to disambiguate potentially threatening individuals. Journal of

Personality and Social Psychology, 83(6), 1314–1329. https://doi.org/10.1037//0022-

3514.83.6.1314

Hine, C. (2016). The internet and research methods. In G. N. Gilbert & P. Stoneman (Eds.),

Researching Social Life (pp. 339–356). Los Angeles, CA: Sage Publications.

Stanislaw, H., & Todorov, N. (1999). Calculating of signal detection theory measures.

Behavior Research Methods, Instruments, & Computers, 31(1), 137–149.

https://doi.org/10.3758/BF03207704

